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LETTER TO THE EDITOR 

Fractal dimensions of confined clusters in two-dimensional 
directed percolation 

Christian Kaiser and Lo% Turban 
Laboratoire de Physique du Solidet. Universit6 Henri P o i n d  (Nancy 9, BP 239, F-54506 
Vandceuvre I& Nancy Cedex, France 

Received 15 June 195'4 

Abstract The fractal structure of directed permlation clusters, grown at the percolation 
threshold inside parabolic-l&e systems, is shrdied in two dimensions via Monte Carlo 
simulations. With a , f e  surface at y = fCx' and a dynamical exponent =,.$e surface shape 
is a relevant permrbation when k < I lz  and, the fractal dimensions of the &isompic clusters 
vary mntin'nuously with k, Analytic expressions for these variations are obtained using a blob 
picture approach. 

Since the work of Cardy [l], one knows that a large-scale alteration of the shape of a system 
may influence its local critical behaviour (further references can be found in the review [2]). 

Cardy studied systems limited by corners or wedges which are scale invariant shapes 
for an isotropic system and thus introduce a marginal perturbation leading to varying local 
exponents. More generally, one may consider systems limited by a'parabolic-lie surface 
at y = +Cx' in the ( x ,  y)-plane in two dimensions, a parabolic cylinder or a paraboloid in 
higher dimensions. Under a uniform rescaling of the lengths by a factor 6, C is changed 
into C' = b'-'C. As a consequence, C grows to infinity for k > 1 whereas it goes to zero 
when k < 1. It remains scale invariant when k = 1, which corresponds to the marginal 
comer geometry mentioned above. 

Since 1/C vanishes for the the semi-infinite system, it can be considered as a scaling 
field for the reference fixed point corresponding to the flat surface. This scaling variable is 
an irrelevant perturbation for k > 1 and a relevant one for k c 1. 

In the relevant case, the shape renormalizes to a narrow system, so that the local order 
is weakened. Using a conformal transformation from the half-space to the interior of the 
parabola, one can show that the critical correlation functions decay from the tip along the 
x-axis in a stretched exponential way [3]. The order parameter at the tip also displays an 
essential singularity as a function of the reduced temperature [3-51. Similar results were 
obtained for the percolation problem [6]. In the case of chain polymers (self-avoiding walks) 
with one end fixed at the tip, the exponent associated with the radius of gyration becomes 
anisompic [71. 

When the unperturbed system is itself anisotropic, i.e. when the correlation length 
exponents V I ,  in the xdirection and ul in the transverse direction are different with a 
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Figure 1. Smctun of finite clustea generated at pE for (U )  I% growth, (b), (c) parabolic 
sysems with k = 4 and C = 2.4. respctively. 

dynamical exponent z given by the ratio q / v I ,  the appropriate scaling factor becomes b' 
in the x-direction. Then the scaling field 1/C transforms as 

and the critical behaviour is modified when k < l/z instead of 1. The directed walk 
(polymer) with z = 2 was shidied in [B, 91. In the marginal case, which then corresponds 
to the me parabola, the local susceptibilities given by the numbers of walks with N steps 
starting at the tip and ending either anywhere or on the surface, diverge with a C-dependent 
power of N as expected. 

In the present work, we study the structure of directed percolation clusters confined 
inside a 'parabola'. We consider the site percolation problem, directed along the diagonal 
of a square lattice, with the sites inside or on the 'parabola' belonging to the system 

Using a standard Monte-Carlo method, 2x I@ clusters starting fTom the tip at x = y = 0 
were generated at the percolation threshold pc = 0.705489(4) 1101 as shown in figure 1. 
The square radii of gyration for s-site clusters along the two directions 

. .. 
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Fcgm 2. Fractal d i m i o n s  dIl(k), ds(k) and ddk) vmus the system-shape exponent k. The 
,lines give the anal* results obtain& via a blob piaure appmach. nR fracral dimensions ye 
va.!ying,when the perhubation is reJevanI (kc l l r  = 0.633(2)). 

were put into bins with respect to the sizes 2' < s < 2'+' (i = 0,1,2, ...) and 
the bin averages (Xf), (Y:), were calculated for 'finite' clusters, i.e. for clusters with 
x& < L = IOOO, the system size along the x-direction. 

Asymptotically, the following power laws are expected: 

(3) 

where F is the centre of the bin, 51; = (X:)l/z, = (Y$)'/z and dl,(k), dL(k), are the 
hctal dimensions in the two directions. In a log-log plot, a linear behaviour is obtained 
for Z6 -= F < Z"-Z", the deviations at larger sizes being mainly due to the finite size of 
the system. There, the contribution from longer clusters with the same values of F is not 
taken into account. The fractal dimensions, shown in figure 2 versus k for different values 
of C, were obtained from least-square fits of the data in the intermediate linear regime. 

In order to analyse our results, let us first consider unconfined directed percolation [I I]. 
In two dimensions, the best estimates for the critical exponents, obtained through series 
expansions, are [lo] 

- - p x '  ~ p k )  

.~ . 

UL = 1.097(2) VN = 1.734(2) ' y =2.278(2) (4) 

z = 1.581(3) fi  = 0.276(3) (5) 

giving 

from scaling. Extending an argument of Stauffer for ordinary percolation [12], one obtains 
the following relations for the fractal dimensions of critical directed percolation clusters: 

d l = - -  ' -+ - 1.473(2) d l  = e = 2.329(3). 
U11 U l  

The numerical value of d ~ .  d may be at first sight surprising for a fractal object. Actually, 
it can be aaced to the anisotropy. Let Ig and 1 ~ .  be the length and width of an s-site cluster 
with s - [$ - rLd1. It follows that 

(7) In = Ildl/dl = l l *  
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Fire 3. In the blob picture appwh. confined clusters are built through piling up successive 
anisotropic blobs, with a mvme size b~ fixed by the geometry of the system. The correlations 
inside each blob are the same as for uncnnfined clusters. 

grows faster with s than 1 ~ .  s itself grows faster with l~ than an isotropic massive object 
due to the parallel growth. Introducing the characteristic length associated with the surface 
of the cluster 

I - (Il,IL)lfl -Id' (8) 

a single fractal dimension 4 can be defined with [ l l ]  

and now, df = 1.805(2) < 2. 
When the perturbation introduced by the surface is relevant, the structure of confined 

clusters can be studied using a blob picture approach [13,14,7]. Inside the 'parabola', the 
cluster configuration results from the piling up of anisotropic blobs as shown in figure 3. 
Within each blob, the cqrrelations are the same as for unconfined clusters. The nth blob at x, 
has a width l n ~  = Cxi  which is fixed by the geometry of the system. Using equation (7), 
its length is 

ln,l = C'X;' - CYnY (10) 

where the last expression corresponds to a continuum approximation in the blob index n. 
From x, - x.-l = 1,11, one deduces the following differential equation in the continuum 
limit: 

(1 1) 

where the last term follows from the n-dependance of x, in (10). Identifying powers of C 
and n, one obtains U = z/(l -zk) and U = ku. These exponents are positive for a relevant 

-- &!l CUn" - C("-L)/*n-I+U/zk 
dn 
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perturbation only. Otherwise, when k t 1 f z ,  the cluster grows freely, i.e. there is a single 
blob. Let s, - (lnll)dl be the number of sites inside the nth blob. For the whole cluster, we 
have 

In the same way, the cluster length is given by 

lN (13) 
N 

Ill = cLnll c2/(1-zk) & nzk/ ( l - zk)  ~ 2 / ( 1 - z k ) ~ l / ( 1 - 2 k )  , 

"=I 

Eliminating N between (12) and (13). one finally obtains 

s - Cz(dl-l)l II d l G I )  

which, together with IA = C@, also gives 

dll(k) = 1 +zk(dl - 1) 0 < k 6 l / z  (14) 

dJ.(k) = - 41(k) 0 .< k < l / z .  (13 c-1" I l 4 ( k )  
k 

The variations of the fractal dimensions are shown in figure 2. For a relevant 
perturbation, dll(k) and d l ( k )  vary continuously with k until they reach their unperturbed 
values for k = l j z .  As a result of finitesize effects, the Monte Carlo values deviate from 
the analytical ones when C increases. For large C values the system is more open and the 
number of blobs inside it remains small for a finite system. As a consequence, the Monte 
Carlo estimates for the fractal dimensions are then closer to the unperturbed ones. 

Results for the tip percolation probability will be discussed elsewhere. 

CK thanks Henri Poincare University for hospitality. This work was supported by CNIMAT 
under project no 155C93b. 
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